

AVVISO DI SEMINARIO

Biomimetic Scaffolds for Tissue Engineering

Dott.ssa Cristina Gentilini

Department of Materials and Institute of Biomedical Engineering Imperial College London

giovedì 22 settembre 2011 alle ore 11.30

aula A1 del Dipartimento di Scienze Chimiche e Farmaceutiche

In the field of regenerative medicine, there is a need for novel biomaterials that combine - among other qualities – biocompatibility, mechanical support and functionality. Poly (γ -glutamic acid) (γ -PGA) is a biocompatible, enzyme-degradable, naturally produced polymer with a higher resistance to hydrolysis than commonly used synthetic polyesters. Notably, γ -PGA's free carboxyl side groups allows for simple chemical functionalisation, making it a versatile candidate for tissue engineering.[1,2]

For scaffold applications, the water solubility of γ -PGA was tailored by esterification of the carboxylic groups by short-chain alkyl and aryl bromides.[3] An integrin-binding RGD peptide sequence was also conjugated in order to provide a material with enhanced cell adhesion properties. As part of the material characterisation, conformations of γ -PGA produced by Bacillus subtilis and of its esterified derivatives were explored by means of circular dichroism and nuclear magnetic resonance spectroscopies.

In view of possible applications of γ -PGA as a scaffold in orthopaedic tissue engineering, nanofibres of modified γ -PGA were produced by electrospinning, a leading technique used to assemble biomimetic scaffolds by generating fibres with a morphology closely resembling that of native extracellular matrix. Scaffolds were evaluated *in vitro* for cell adhesion and viability of human mesenchymal stem cells.

In a second approach, tensile deformation was used to produce highly-aligned films with ultra-high tensile strength.[4] This enabled us to tailor γ -PGA's mechanical properties over a broad range, targeting that of native ligaments.

1. Sung, M.-H.; Park, C.; Kim, C.-J.; Poo, H.; Soda, K.; Ashiuchi, M. Chem. Rec. 5: 352-366, 2005.

2. Place, E.S.; George, J.H.; Williams C.K.; Stevens M.M. Chem. Soc. Rev. 38: 1139-1151, 2009.

3. Kubota, H.; Nambu, Y.; Endo, T. J. Polym. Sci. Part A Polym. Chem. 31: 2877-2878, 1993.

4. P. Smith, P.J. Lemstra, J. Mater. Sci. 15: 505, 1980.

Il Direttore del Dipartimento Prof. Paolo Tecilla

Università degli Studi di Trieste Dipartimento di Scienze Chimiche e Farmaceutiche sedi: - via Licio Giorgieri,1 (amministrazione) - piazzale Europa, 1 34127 Trieste

dipdscf@units.it tel +39 040 558 3902 tel +39 040 574181-5587943 www.dscf.units.it fax +39 040 558 3903 fax +39 040 52572