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Electrons in a weak periodic potential 
 

Assumptions: 

 

1. Static defect-free lattice – perfectly periodic potential. 

2. Weak potential – perturbative effect on the free electron states. 

 

Perfect periodicity of the lattice potential implies that any electronic property we deduce will 

also be influenced by this periodicity. 

 

Bloch states:  Average potential at a point is U(r). Assume independent electron picture, the 

single particle Schrodinger equation is: 

 

        
  

  
                   

Using Bloch’s Theorem;                  with       periodic in the lattice i.e. 
              

Note that  

                                    
 

implying       is not periodic in the real lattice. But ant measurable property will depend 

on       
          

  which is periodic in the real lattice. 

 

      is called the Bloch function. In terms f the Bloc function the Schrodinger equation 

becomes, 

 

  
  

  
                      

          

or  

 

 
    

  
  

  

 
    

  

  
                     ----(1) 

or  

 
 

  
                              ----- (2) 

 

This equation is difficult to solve for any general potential U(r) – the periodicity of the lattice 

lets us see some general features of the solution even without solving.   

 

 

A. Quantization of k: Because of the lattice periodicity it is enough to solve the equation 

in one primitive cell of the reciprocal lattice thus independent k values will have to be 

confined to the first Brillouin zone   
 

 
   

 

 
   - the values of k will be quantized 

to 
 

 
  ,   being and integer.  

B. How many values of k relevant: The total number of independent values of k =L/a=N, 

the number of lattice sites. 

C. Significance of k:  
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implying that the Bloch state is not an eigen state of the momentum operator – this is 

expected as the translational invariance of the system is broken by the lattice 

potential. k is called the ‘crystal momentum’ – it determines the transition rules in  

scattering problems (we shall see this later in the course when we do phonons)- it also 

determines the phase factor the wave function picks up as it moves by a lattice 

translation vector    

                 
 

D. Formation of energy bands: Equation (1) is an eigenvalue problem in a box (the 

primitive lattice) – for a given value of k there will be an infinite number of discrete 

values of the energy     with the corresponding eigenfunction                   . 

The values of energy for all k for a given n form an energy band. 

 

Figure 1:The energy levels of electrons moving in the periodic potential of one dimensional chains made up of 5 

and 40 atoms 

 

Note that for a periodic lattice k and k+G denote the same physical states. To see this 

consider    outside the 1st Brillouin zone – bring it in using       .  

                                                    
 

with                     . Probability of finding an electron at r with ‘wave-vector’    is 

proportional to          
          

  which equals to the probability of finding an electron 

there with ‘wave-vector’       . In this sense the two states     and   are equivalent. 

For example consider the energy eigenvalues for      and        . Energy in the state   is 

given by: 

 

 
     

  
  

  

 
     

  

  
                            

Substitute        and use                      to get 

 

 
    

  
  

  

 
    

  

  
                          

 

which tells us that             – all equivalent states are associated with the same energy 

eigenvalue. 

 

Nearly free electron approximation – Empty lattice approximation: Take the Sommerfeld free 

electron states – treat the lattice as a weak perturbation - free electron states smoothly evolve 

into the Bloch states as the potential is slowly turned on – we shall see later that the free 

electron states and the Bloch states in a weak periodic potential differ appreciably only at the 

centre and at the ends of the Brillouin zones – hence this approach is justified post priori.  

 

Writing the potential and the Bloch function in terms of their Fourier components: 
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and 

             
     

  

 

Substitute it in equation (1), multiply form left by         and integrate over the volume of the 

primitive cell to get  

 
  

  
      

                              

  

   

 

In the limit    ; the solutions are either  

           
or 

     
  

  
      

  for a particular value of      .  

The solution in the empty lattice for the band of index n is therefore particularly simple: apart 

from a single   , all reciprocal-lattice vectors have vanishing coefficients in the expansion. 

The normalized Bloch function of this state is then  

        
 

  
            

 

Thus there is a direct one-to-one correspondence between the band indices n and the 

reciprocal lattice vectors   .  

 

Band structure of electron in a 1-D lattice 
 

 Lattice length  , lattice spacing      . The allowed values of      
  

 
 with –

 

 
   

   ; with –
 

 
   

 

 
.      

  

 
. In the empty lattice approximation: 

    
  

  
      

  
  

  
 
  

 
 
 

        

 

This looks different form the free electron energy derived using Sommerfeld model,   

   
  

  
   

  

  
 
  

 
 
 

   

The apparent difference becomes clear below. 

 

Different zone schemes:  

 

a. Reduced zone scheme: All the bands are drawn in the first Brillouin zone. (see  

Figure 2).  

b. Repeated/periodic zone scheme: Every band is drawn in every Brillouin zone (see 

Figure 3).   

c. Extended-zone scheme: Different bands are drawn in different Brillouin zones (see 

Figure 4). 
 



PH-208 Electrons in a weak periodic potential Page 4 
 

 

Figure 2: Dispersion 

relation of free 

electrons in empty 

lattice approx in 

reduced zone 

representation. 

 

Figure 3: Dispersion relation of 

free electrons in empty lattice 

approx in repeated zone scheme 

 

Figure 4: Dispersion relation of 

free electrons in empty lattice 

approx in extended zone scheme 

 

The infinite number of solutions associated with a given k can also be distributed among the 

infinite number of vectors     in such a way that one solution should belong to each 

equivalent vector. The reciprocal lattice can be broken up into Brillouin zones of different 

orders using the same procedure for creating Wigner-Seitz cell. The assignment of the states 

to the zones is then done simply by assigning the states of the first band to the wave vectors 

in the first Brillouin zone, the states of the second band to the wave vectors in the second 

Brillouin zone, and so forth. This is how the extended-zone scheme is obtained.  
 

Conversely energy eigenvalues of the electrons moving through the empty lattice for a given 

k values in the reduced zone scheme can be got from the free-electron dispersion curve by 

finding the equivalent k values inside the first Brillouin zone for each wave number outside 

of it, and then shifting the energy eigenvalue to this k value. This procedure is called zone 

folding. 

 
Fermi surface in empty lattice approximation: Fermi-Dirac statistics determine the filling of 

the energy levels – Fermi surface important as properties of metals are determined by the 

electronic density of states at these points - dispersion relation obtained in the extended-zone 

scheme in the empty lattice approximation is identical to the quadratic dispersion relation of 

free electrons - the nth band is the part of the free-electron spectrum that falls into the nth 

Brillouin zone.  

 

Band structure of electron in a 2-D lattice 
 Lattice constant a, z electrons per site, N sites – total number of electrons      .    is 

determined by                      ; giving               

 

 

Figure 5: Special points in 2-D Brillouin zone 
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For         
 

 

 

 
 

 

 
, the boundary of the 1

st
 Brillouin zone. So the Fermi surface lies 

entirely inside the 1
st
 Brillouin zone.  

  

For          
 

 

 

 
 

 

 
, the boundary of the 1

st
 Brillouin zone. In this case    is larger 

than the distance    but smaller than the distance   . Thus, when the lowest-energy states 

are filled gradually by electrons in the ground state (as required by the Fermi–Dirac 

statistics), the lowest-lying states in the second band becomes occupied before the highest-

lying states in the first band.  

 

 

Figure 6: Fermi surface for z=1 

 

Figure 7: Fermi surface for z=2 

 

 

Figure 8: Band structure for z=2 in 2-D lattice in reduced zone scheme 

For the case    , in reduced zone representation, the Fermi surfaces forms discontinuous 

structure for the 1
st
 and 2

nd
 band. If the wave vectors are reduced about the points M or X 

rather than  then the 1
st
 and 2

nd
 bands form continuous Fermi surfaces – the 1

st
 band is hole-

like and the 2
nd

 band is electron-like. 

 

 

Figure 9: Band structure for z=2 in 2-D lattice in repeated zone scheme 

In repeated/periodic zone scheme the n
th

 band is formed of those regions where circles from 

at least n different zones overlap.   
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Figure 10: z=2 case reduced about the M and X points 

The bands thus formed can be electron-like or hole-like depending on whether they enclose a 

filled area or an empty area. Note that in a magnetic field electrons will move along a 

constant energy surface (remember: magnetic field does not do any work on a moving 

charge). For a free electron  

 
  

  
         

 

 
      

Particles in electron-like Fermi surface (Figure 11.b) move in a sense opposite to that in hole-

like orbits (Figure 11.a).     

 

 

Figure 11: hole-like and electron-like orbits 

 

Band structure of simple cubic lattice with monatomic basis 
  

 

Figure 12: band diagram for simple cubic along two symmetry directions 

 

Figure 12.a is for wave vectors along the line   connecting the centre Γ = (0, 0, 0) of the 

Brillouin zone and X = (π/a)(0, 0, 1). The numbers represent the degeneracy of the bands. We 
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will calculate the energy of the state associated with the wave vector  
 

 
               

Remember the energy is given by     
  

  
      

  

The various bands are: 

Band A:         
  

  
      

  
  

  
 
 

 
 
 

    

Band B:   
  

 
              

  

  
      

  
  

  
 
 

 
 
 

        

Band C:    
  

 
             

  

  
      

  
  

  
 
 

 
 
 

        

Band D,E,F,G:   
  

 
        

  

 
         

  

 
        

  

 
             

 

 
 
 

       . This 

band is 4-fold degenerate 

 

Figure 12.b is for wave vectors along the line   connecting the centre Γ = (0, 0, 0) of the 

Brillouin zone and R = (π/a)(1, 1, 1). 

 

Assignment problem: Calculate Figure 12b 

 

 

Effect of weak lattice potential on the free electron dispersion relation 
 

Treat U to be a weak perturbation – need not solve the equation – can get the result applying 

perturbation theory to the U=0 case of free electrons. The results vary appreciably from the 

free electron model only near the centre and the edges of the Brillouin zones.  Take the 

simple example of system of electrons in a very weak 1-D periodic lattice. At the edge of the 

Brillouin zone      
 

 
  the condition for Bragg reflection is satisfied. [Recall: Bragg 

condition         in 1-D is             .] Hence electrons with wave vector at 

the Brillouin zone edge     
  

 
  form standing waves – solutions linear superposition of 

left moving and right moving waves  - two different solutions can be formed from the linear 

combination of the left-moving        
 

 
  and the right-moving waves          

 

 
  –  

 

   
  

 
 
     

 
 
 

  
       

  

 
   

 

   
  

 
 
     

 
 
 

  
        

  

 
   

    and    are the symmetric and anti-symmetric solutions respectively. Charge density 

associated with    is  

              
  

 
  

Similarly 

              
  

 
  

 

Density of electrons for    maximum near          i.e. at the lattice sites where the 

potential energy is minimum. Similarly density of electrons for    maximum near   
 

 
 
  

 
   i.e. in between the lattice sites where the potential energy is maximum. So the 
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energies of the two states at the Brillouin zone edge are no longer degenerate – they differ in 

energies –a band gap opens up of magnitude    just below the gap the state is    and just 

above the gap the state is   .  

 

Figure 13: potential energy of electrons in a 

1D lattice 

 

Figure 14: Energy of symmetric and anti-

symmetric electronic states at the Bragg plane 

Estimate of   : Write the potential energy of the electrons as             
   

 
 .  The 

first order difference in the energy between the two states is 

           
 

 

                  

So the band-gap is the Fourier component of the potential energy. 

 

Figure 15: Appearance of band-gap at the Brillouin zone edge 

Note: at zone boundaries we have standing waves – group velocity         =0 implying 

that the slope of the dispersion relation vanishes at the zone boundary. 

 

Figure 16: Band structure of nearly free electrons in extended zone scheme and repeated zone scheme 

The constant energy surfaces are spherical in the free-electron approximation. In the case of 

electrons in a weak periodic potential, the surfaces are no longer spherical – they are distorted 

as the Brillouin edge is approached.  

 

Figure 17: constant energy surfaces for (a) free electrons and (b) electrons in a weak periodic potential 

 

 

 


