Solid state periodic calculations

As already mentioned, in order to build a model system as close as possible to
the one experimentally observed it is important to include in the calculations
the gold surface on which the HAT molecule is adsorbed.

Electronic structure calculation for periodic systems

Crystalline solids and surfaces can be treated theoretically with the methods of
solid state physics, in which advantage is taken from the spatial periodicity of
the system under study. A solid sample is considered as a supercell obtained
by replication of the crystallographic primitive cell along the three directions of
its defining edges (figure[1)). By application of the so—called periodic boundary
conditions, the sample becomes in turn the “primitive” cell of an infinitely
extended crystal. Thanks to this definition of the system, it is possible to
obtain the description of the electronic structure of the solid sample free from
any boundary effect and limiting the detailed ab initio atomic simulation to just
the contents of the crystallographic primitive cell.

Figure 1: The definition of a solid cristalline sample (the “large” cell marked by
bold black edges) as a supercell of the crystallographic primitive cell (the yellow
cell). The supercell edges are integer multiples of the corresponding edges of
the crystallographic primitive cell: /TZ = N,;d;. For the supercell in the figure we
have (N1, Na, N3) = (2, 4, 3): of course, for a real solid sanﬁle, the N; integers
would be of the order of the Avogadro number. 18 superce

In general terms, the procedure to solve the monoelectronic time independent
Schrédinger equation for the i—th electron:
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for the case of a crystalline solid where the potential energy V is periodic can
be summarized as follows.
Since V is periodic over the Bravais lattice R, defining the crystal structure of
the solid, it can be expanded in a Fourier series as:
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where G is a vector of the reciprocal lattice R}, of R, and:

Vo= ! /U V (F) exp (—zé : F) dr (3)
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with v being the volume of the primitive cell of R,,.

Due to the periodic boundary conditions, the eigenfunction ¢ () is periodic
on the Bravais lattice Rj; defined by the supercell which represents the solid
sample. Note that Rys is commensurate to R, i.e. the primitive lattice vectors

A; of Ry are integer multiples of the primitive lattice vectors @; of R,:
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Being periodic over Ry, also ¢ (¥) can be expanded in a Fourier series:
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where £ is a vector of the reciprocal lattice Ry, of Ry and:

C, = % /V o (%) exp (~ik - 7) dF (6)

with V' being the volume of the primitive cell of Rjs, i.e. the volume of the
solid sample.
By plugging |5| and [2] into [1} this latter can be converted into an homogeneous
system of algebraic equations for the unknown Fourier coefficients C}; and energy
eigenvalues e:

h - . €q:gentral:equati
(2mekj2—€> CE+ZV@CE7@:O ke Ry (5675“ J(Q/lﬁ
G

(k = |F)

Since Ry is commensurate to R, the lattice vectors of R} are a(n infinite)
subset of those of R}, and the primitive cell of RZ contains N = NN, N3 lattice
points of Rj,.

Even if this would not be mandatory in principle, it is most convenient to take
the first Brillouin zone, Bz, as the the primitive cell of R}, among all the infinite
possible choices.

By taking advantage of the fact that R, is commensurate to R, it is possible to
partition the system [7] into N independent subsystems indexd by the N lattice
points of R}, inside Bz:
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The original problem has thus been converted into N algebraic systems, one for
each k point inside Bz.

For a fixed k point inside Bz, the solution of the corresponding system will give
an infinite (in principle) set of eigenvalues € and associated eigenfunctions ¢ (7)
(i.e. a set of Fourier coefficients C). The eigenvalues sorted in ascending order
can be indexed by a single integer n (called band index) and a single solution
of [1}is thus completely indexed by the k point inside Bz and the band index n:
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Limiting the number of G vectors to be considered

The system |8 has as many equations as G vectors, i.e. an infinite number. To
make it computationally affordable only the finite number of G vectors inside
an energy isosphere in G space is usually considered:
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where F utofr is a predefined cutoff energy value.

Of course, the precision of the calculation will be related to Feuiofr, larger val-

ues implying more G vectors considered and hence a higher precision. On the

other hand, increasing the cutoff value makes the computation more resource

demanding, so a balance has to be found.

Pseudopotentials

Another crucial point regarding the computational implementation of the solu-
tion of system [8]is related to the potential energy V (7).
In the frame of density functional theory, V' is written as:

eq:total:potenti
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where:
Ve is the nuclear potential acting on the electron
Vi is the Hartree potential
Vie is the exchange—correlation potential

Due to the —oo divergence of V.. at the nuclear positions (Viue =~ —Ze? /T,
Z=atomic number) the atomic core wavefunctions display wild high frequency
oscillations when approaching the nucleus and these would require an enormous
number of plane waves to be properly represented by the Fourier expansion.
Roughly, for a function oscillating with a length scale of §, a Fourier expansion
with wave vector components up to 27/4 is required.

As an example, the 1s atomic wave function of the C' atom has an associated
length scale of approximately 6 =~ 0.1a.u.. For C' in the diamond polymorph



(volume of the primitive cell: v = 76.5a.u. = volume of the reciprocal
primitive cell (= volume per G vector in reciprocal space): 872 /v) the number
of required G vectors in the sum of |8 would be:
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In order to cut the number of plane waves in the Fourier expansion of the
potential to a manageable value, the so—called pseudopotential technology has
been developed.

Basically, the pseudopotential is a smooth effective nuclear potential able to
reproduce the effect of the nucleus plus core electrons on the valence electrons.
The idea is that most of the properties one is interested in when doing an
electronic structure calculation depend almost exclusively upon the behavior
of the outermost (valence) electrons of the atoms, i.e. electrons far from the
nucleus.

As far as this is assumed to be the case, then replacing real atomic orbitals with
pseudo-orbitals matching the behavior of the real ones as closely as possible
outside a given distance from the nucleus should not have any sizeable effect on
the calculated properties.

On the other hand, if one is able to make these pseudo-orbitals behave smoothly
inside a given core region (while maintaing their “faithful” behavior outside it),
the number of Fourier terms needed to represent them can be dramatically
reduced, thus making the system [§] computationally approachable.

As said above, the goal of smoothing the one electron orbitals inside the core
region while keeping their original behavior outside it is achieved by replacing
the true nuclear potential V. with a properly designed pseudopotential.

The generation of atomic pseudopotentials is far from trivial and this technology
has been (and is still being actively) developed over a long period of time. To
better clarify the concept of a pseudopotential, figure [2] shows the all-electron
and pseudo counterparts for the nuclear potential and 4s orbital of a T% atom.
The diverging behavior of the potential felt by the T 4s electron is replaced by
a finite pseudopotential: the consequence is that the oscillations of the atomic
orbital in the core region are eliminated, while maintaining the original behavior
at distances >~ 2 bohr from the nucleus.

Practical implementation of the calculations

We have performed the periodic calculations needed for this thesis using the
Quantum Espresso (QE) [FIXME] suite of codes. This is an actively main-
tained and internationally recognized software for the practical implementation
of the theoretical aspects outlined above.

The Vyue contribution to the total potential V' (eq. [LO]) is built with carefully
designed atomic pseudopotentials, which are given as input quantities. The
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remaining two contributions, Vg and V. depend on the electron density n (7)
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Figure 2: Lower panel: (local part of) the atomic potential for a 4s electron in
the T isolated atom; dotted line is the true nuclear potential; full line is the
pseudopotential. Upper panel: radial part of the 4s orbital; dotted line is the
undumped behavior; full line is the pseudo orbital behawior.Flg:pseu opotential

Ve = Vu(n(r)) (11)

In turn, the electron density can be calculated only after the one electron orbitals
have been obtained by the solution of the set of monoelectronic Schrédinger
equations [T}

n () = 1éi () (13)

For this reason, as is usually the case in general, the set of monoelectronic
Schrédinger equations |1 is solved self-consistently for a given set of k points
given as input. For each k point:

e the V. potential is constructed with the atomic pseudopotentials
e a starting guessed electron density is built up
o Vg (n(r)) and V. (n (7)) are calculated



e the monoelectronic orbitals ¢; (7) are obtained by converting eq. [1| into
the corresponding Fourier space version [8] A crucial computational point
in this regard is the use of Fast Fourier Transform techniques for the
generation of the Vi, Fourier coefficients on a grid defined by the cutoff
energy condition [9
a new electron density can now be calculated: n (7) = Zf\’ p: (7)]?
the process is iterated until the electron density at step j differs from that
at step j — 1 by less than a predefined convergence threshold

The whole process is represented in the flowchart shown in figure
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Figure 3: The Fsieglf; fcl%r%vsclﬁg%r%t field procedure as implemented in the Quantum
Espresso code.




