Preparazione di SOLUZIONI TAMPONE e verifica del potere tamponante

Avendo a disposizione CH_3COOH glaciale (100% CH_3COOH) e NaOH solido preparare 250 mL di soluzione tampone a pH = 4.80 sapendo che Ka dell'acido acetico è 1.80 * 10^{-5} .

Si assuma che la concentrazione di sale (acetato di sodio) nella soluzione finale sia 0.100 M.

Utilizzando il cilindro da 50mL, prelevare due aliquote della soluzione da 40mL e porle nei becker da 50 e 100 mL. Misurare il pH con il pH-metro (chiedendo assistenza al docente) e verificare la variazione di pH dopo aggiunta di 1 mL di HCl 0.1 M ad una aliquota e di 1 mL di NaOH 0.1 M all'altra aliquota (impiegare le pipette in plastica a disposizione).

Calcolare quale avrebbe dovuto essere il pH teorico del tampone sulla base delle quantità dei reagenti che sono state prelevate e quali dovrebbero essere le variazioni previste per le aggiunte di HCl e NaOH.

Avendo a disposizione CH₃COONa e HCl 5 M (d = 1.00 g/mL) preparare 100 mL di soluzione tampone a pH = 4.50 sapendo che Ka dell'acido acetico è 1.80 * 10^{-5} .

Si assuma che la concentrazione finale di sale (acetato di sodio) sia 0.0500 M.

Utilizzando il cilindro da 50mL, prelevare due aliquote della soluzione da 40mL e porle nei becker da 50 e 100 mL. Misurare il pH con il pH-metro (chiedendo assistenza al docente) e verificare la variazione di pH dopo aggiunta di 1 mL di HCl 0.1 M ad una aliquota e di 1 mL di NaOH 0.1 M all'altra aliquota (impiegare le pipette in plastica a disposizione).

Calcolare quale avrebbe dovuto essere il pH teorico del tampone sulla base delle quantità dei reagenti che sono state prelevate e quali dovrebbero essere le variazioni previste per le aggiunte di HCl e NaOH.

Avendo a disposizione $NaH_2PO_4 \cdot 2H_2O$ e Na_2HPO_4 preparare 50 mL di soluzione tampone a pH = 6.90 sapendo che Ka₁ dell'acido fosforico è 7.1 * 10⁻³ , Ka₂ è 6.3 * 10⁻⁸ , Ka₃ è 2.2 * 10⁻¹³.

Si assuma che la concentrazione finale di sale (Na₂HPO₄) sia 0.0300 M.

Utilizzando il cilindro da 50mL, suddividere la soluzione in due aliquote uguali e porle nei becker da 50 e 100 mL. Misurare il pH con il pH-metro (chiedendo assistenza al docente) e verificare la variazione di pH dopo aggiunta di 1 mL di HCl 0.1 M ad una aliquota e di 1 mL di NaOH 0.1 M all'altra aliquota (impiegare le pipette in plastica a disposizione).

Calcolare quale avrebbe dovuto essere il pH teorico del tampone sulla base delle quantità dei reagenti che sono state prelevate e quali dovrebbero essere le variazioni previste per le aggiunte di HCl e NaOH.

Reattivi

- 1. CH_3COOH glaciale (100%, d = 1.049 g/mL)
- 2. NaOH solido
- 3. CH₃COONa
- 4. NaH₂PO₄•2H₂O
- 5. Na₂HPO₄
- 6. HCl 5M
- 7. NaOH 0.1M
- 8. HCl 0.1M

Vetreria / Strumenti

- 1. pH-metri
- 2. bilancia
- 3. spatole
- 4. occhiali
- 5. guanti latex
- 6. beakers da 50-100-250 ml
- 7. pipette da 5 e 10 ml
- 8. propipette9. matracci da 100 e 250 ml
- 10. bacchette di vetro
- 11. spruzzette
- 12. cartine per pesata
- 13. pasteur + tettarelle
- 14. imbuti
- 15. cilindro da 50 mL