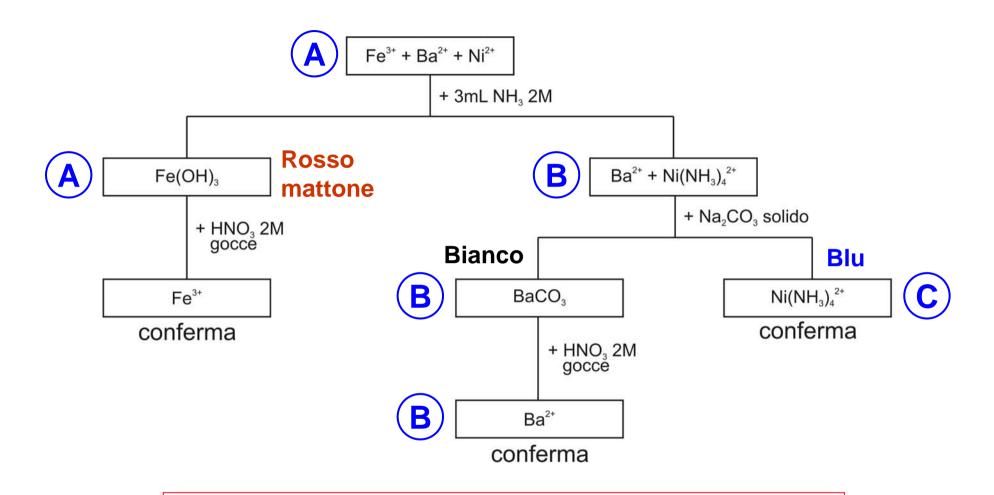
Obiettivo: Separare tramite precipitazione frazionata 3 metalli e confermarne la natura tramite saggi chimici specifici.

Precipitazione frazionata:

Metodo di separazione di composti tramite la loro diversa solubilità per effetto del solvente o per aggiunta di reagenti precipitanti.

Nel caso di composti inorganici:


K_{ps}

Precipitazione completa:

$$[M^{n+}] \le 10^{-5} M$$

Saggi analitici:

Reazioni chimiche specifiche o loro combinazioni che consentono di individuare in maniera univoca la natura chimica di uno ione.

Separazione per centrifugazione!

Centrifugazione:

sedimentazione di un corpo solido ad alta densità miscelato ad un fluido a densità più bassa tramite un movimento circolare.

IMPORTANTE!!!

Non ribaltare la provetta ma pipettare il liquido limpido surnatante

Precipitazione frazionata:

Precipitazione di Fe(OH)₃ in presenza di Ba²⁺ e Ni²⁺

3 mL NH₃ 2M + 5 mL soluzione = totale 8mL NH₃ 0.75M

$$[OH^{-}] = 3.67 *10^{-5} M$$

Qual è la concentrazione di Fe³⁺, Ba²⁺ e Ni²⁺ compatibile con questo pH?

	Kps	[M ⁿ⁺]
Fe(OH) ₃	1.5 * 10 ⁻³⁶	3.0 * 10 ⁻²⁹ M
Ba(OH) ₂	2.2 * 10 ⁻²	1633 M
Ni(OH) ₂	8.7 * 10 ⁻¹⁹	1.4 * 10 ⁻¹⁵

Ma.....

$$Ni^{2+} + 4 NH_3 \longrightarrow Ni(NH_3)_4^{2+}$$

$$Keq = 1.26 * 10^8$$

Complessazione:

Formazione di addotti tra uno ione metallico e un legante, solitamente una base di Lewis.

La formazione dello ione complesso impedisce la precipitazione dell'idrossido.

Conferma dello ione Fe³⁺

Saggio n°1: KSCN

Fe³⁺ + SCN⁻
$$\Longrightarrow$$
 Fe(SCN)²⁺ \Longrightarrow Fe(SCN)₂ Fe(SCN)₃

rosso

rosso

estraibile in etere

Saggio n°2: Na₂HPO₄

$$Fe^{3+} + HPO_4^{2-} \longrightarrow FePO_4 + H^+$$
 giallo

Perché aggiungere CH₃COONa?

Saggio n°3:
$$K_4$$
Fe(CN)₆

$$4\text{Fe}^{3+} + 3\text{Fe}(\text{CN})_6^{4-} \longrightarrow \text{Fe}_4[\text{Fe}(\text{CN})_6]_3$$
Blu di Prussia

Conferma dello ione Ba²⁺

Saggio n°1: H₂SO₄

$$Ba^{2+} + SO_4^{2-} \longrightarrow BaSO_4$$
Bianco

Saggio n°2: Na₂HPO₄

$$Ba^{2+} + HPO_4^{2-} \longrightarrow Ba_3(PO_4)_2^{2+} + 2 H^+$$

Perché aggiungere NH₃?

Saggio n°3: CrO42-

$$4Fe^{3+} + 3Fe(CN)_6^{4-} \longrightarrow Fe_4[Fe(CN)_6]_3$$
Blu di Prussia

Conferma dello ione Ba²⁺

Saggio n°3: CrO₄²⁻

$$Ba^{2+} + CrO_4^{2-} \longrightarrow BaCrO_4$$
Giallo

Aggiungere NaOH 2M goccia a goccia ed agitare sempre!!!!!

$$Cr(OH)_4^- + H_2O_2 \longrightarrow CrO_4^{2-} + O_2$$
 In ambiente basico

$$CrO_4^{2-} + H_2O_2$$
 — \rightarrow $Cr^{3+} + H_2O$ In ambiente acido

Conferma dello ione Ni²⁺

Purificazione per precipitazione con NaOH 2M e ridissoluzione in HNO₃ 2M.

Saggio n°1: DMG (dimetilgliossima)

$$HO-N$$
 $N-OH$ H_3C CH_3 H_3C CH_3 H_3C CH_3 H_3C CH_3 H_3C CH_3 H_3C CH_3 H_4^+

Rosso fragola

IMPORTANTE!!!

Ricordarsi di:

- Dopo aver aggiunto il reattivo precipitante, agitare la sospensione con la bacchetta di vetro facendo attenzione a non far tracimare il contenuto.
- Ricordarsi di pulire accuratamente la bacchetta dopo ogni utilizzo (acido nitrico + acqua distillata).
- Dopo la centrifugazione, pipettare la soluzione limpida in una provetta nuova e facendo attenzione a non risospendere il solido.
- Ricordarsi di marcare ogni provetta con la lettera corrispondente ed il vostro numero.