a.a 2010-2011 I provetta di chimica generale per Biotecnologie, STAN e Geologia- **Scritto A Esercizio 1** (7 punti)

a) Scrivere la formula dei seguenti composti:

Idrossido di calcio Ca(OH)₂

Solfito di ammonio (NH₄)₂SO₃

Cianuro di potassio KCN

Tri-triossosolfato(IV) di di-alluminio Al₂(SO₃)₃

Anidride solforosa SO₂

b) Scrivere il nome IUPAC e tradizionale di

HNO₃ acido triosso nitrico (V) -acido nitrico

Ca(HSO₃)₂ di-triossosolfato (IV) di calcio – idrogeno solfito di calcio, solfito acido di calcio, bisolfito

N₂O₃ triossido di diazoto – anidride nitrosa

Esercizio 2 (9 punti)

Prevedere la geometria di ICl_4^- (I = numero atomico 53; 5 periodo, Cl = numero atomico 17) e descrivere la formazione dei legami con la teoria del legame di valenza. Geometria AX4E2 planare quadrata I ibrido sp³d² – 4 legami sigma

Esercizio 3 (7 punti)

Calcolare quanti atomi di ossigeno sono presenti in 10.196 grammi di ossido di alluminio (Peso atomico alluminio = 26.980 uma, Peso atomico ossigeno = 16.000 uma) $1.807 * 10^{23}$

Esercizio 4 (7 punti)

Calcolare la formula minima di un composto contenete sodio, zolfo e ossigeno sapendo che dall'analisi elementare risultano le seguenti percentuali in peso per gli elementi che lo costituiscono: Sodio 29.10%, zolfo = 40.51 %, resto ossigeno (peso atomico sodio = 22.99 uma, peso atomico zolfo = 32.00 uma, peso atomico ossigeno = 16.000 uma) $Na_2S_2O_3$

a.a 2010-2011 I provetta di chimica generale per Biotecnologie, STAN e Geologia- **Scritto B Esercizio 1** (7 punti)

a) Scrivere la formula dei seguenti composti:

Idrossido di rame (II) Cu(OH)₂

Nitrito di calcio Ca(NO₂)₂

Fluoruro di magnesio MgF₂

di-triossoclorato (V) di calcio Ca(ClO₃)₂

Anidride clorica Cl₂O₅

b) Scrivere il nome IUPAC e tradizionale di

HClO₄ acido tetraossoclorico (VII), acido perclorico

Li₂HPO₄ Tetraosso fosfato (V) di di-litio, monoidrogenofosfato di litio

Cl₂O ossido di dicloro, anidride ipoclorosa

Esercizio 2 (9 punti)

Prevedere la geometria della molecola XeOF₄ (Xe = numero atomico 54; 5 periodo, F = numero atomico 9) e descrivere la formazione dei legami con la teoria del legame di valenza. Geometria AX5E piramide a base quadrata, Xe ibrido $sp^3d^2 - 5$ legami sigma 1 legame pigreco

Esercizio 3 (7 punti)

Calcolare quanti atomi di ossigeno sono presenti in 14.194 grammi di pentaossido di difosforo (Peso atomico fosforo = 30.97 uma, Peso atomico ossigeno = 16.000 uma) $3.011 * 10^{23}$

Esercizio 4 (7 punti)

Calcolare la formula minima di un composto contenete idrogeno, arsenico e ossigeno sapendo che dall'analisi elementare risultano le seguenti percentuali in peso per gli elementi che lo costituiscono: idrogeno 2.12%, arsenico = 52.78%, resto ossigeno (peso atomico idrogeno = 1.008 uma, peso atomico arsenico = 74.92 uma, peso atomico ossigeno = 16.000 uma) $\frac{\text{H}_3\text{AsO}_4}{\text{H}_3\text{AsO}_4}$

a.
a2010-2011 I provetta di chimica generale per Biotecnologie, STAN e Geologia
- $\mathbf{Scritto}$ \mathbf{C}

Esercizio 1 (7 punti)

a) Scrivere la formula dei seguenti composti:

Idrossido di sodio NaOH

Carbonato di alluminio Al₂(CO₃)₃

Solfuro di sodio Na₂S

tetra-ossosolfato(VI) di di-potassio K₂SO₄

Anidride carbonica CO₂

b) Scrivere il nome IUPAC e tradizionale di

H₂SO₃ acido triosso solforico (IV), acido solforoso

Mg(HCO₃)₂ di-triossocarbonato (IV) di magnesio, idrogeno carbonato di magnesio

Br₂O₃ triossido di dibromo, anidride bromosa

Esercizio 2 (9 punti)

Prevedere la geometria della molecola IOF_5 (I = numero atomico 53; 5 periodo, O = numero atomico 8, F = numero atomico 9) e descrivere la formazione dei legami con la teoria del legame di valenza Geometria AX6 ottaedro, I ibrido $sp^3d^2 - 6$ legami sigma 1 legame pigreco

Esercizio 3 (7 punti)

Calcolare quanti atomi di ossigeno sono presenti in 1.0800 grammi di pentaossido di diazoto (Peso atomico azoto = 14.000 uma, Peso atomico ossigeno = 16.000 uma) $3.011 * 10^{22}$

Esercizio 4 (7 punti)

Calcolare la formula minima di un composto contenete idrogeno, carbonio e ossigeno sapendo che dall'analisi elementare risultano le seguenti percentuali in peso per gli elementi che lo costituiscono: idrogeno 6.73%, carbonio = 40.02%, resto ossigeno (peso atomico idrogeno = 1.008 uma, peso atomico carbonio = 12.01 uma, peso atomico ossigeno = 16.000 uma) CH_2O

a.a 2010-2011 I provetta di chimica generale per Biotecnologie, STAN e Geologia- **Scritto D Esercizio 1** (7 punti)

a) Scrivere la formula dei seguenti composti:

Idrossido di magnesio Mg(OH)₂

Permanganato di sodio NaMnO₄

Ioduro di argento AgI

di-tetraossomanganato (VII) di calcio Ca(MnO₄)₂

Anidride borica B₂O₃

b) Scrivere il nome IUPAC e tradizionale di

H₃BO₃ acido triossoborico (III), acido borico

 $Ca(HSO_4)_2$ ditetraossosolfato (VI) di calcio- idrogeno solfato di calcio, solfato acido di calcio I_2O_5 pentossido di di-iodio, anidride iodica

Esercizio 2 (9 punti)

Prevedere la geometria di I_3^- (I = numero atomico 53; 5 periodo) e descrivere la formazione dei legami con la teoria del legame di valenza Geometria AX2E3 lineare, I ibrido sp³d – 2 legami sigma Esercizio 3 (7 punti)

Calcolare quanti atomi di ossigeno sono presenti in 8.690 grammi di anidride ipoclorosa (Peso atomico cloro = 35.450 uma, Peso atomico ossigeno = 16.000 uma) $6.022 * 10^{22}$

Esercizio 4 (7 punti)

Calcolare la formula minima di un composto contenete potassio, cromo e ossigeno sapendo che dall'analisi elementare risultano le seguenti percentuali in peso per gli elementi che lo costituiscono: potassio 26.58% e cromo = 35.35%, resto ossigeno (peso atomico potassio = 39.10 uma, peso atomico cromo = 52.00 uma, peso atomico ossigeno = 16.000 uma) $K_2Cr_2O_7$

a.a 2010-2011 I provetta di chimica generale per Biotecnologie, STAN e Geologia- **Scritto E Esercizio 1** (7 punti)

a) Scrivere la formula dei seguenti composti:

Idrossido di alluminio Al(OH)₃

Ipoclorito di magnesio Mg(ClO)₂

Bromuro di calcio CaBr₂

tri-diossonitrato (III) di alluminio Al(NO₂)₃

Anidride periodica I₂O₇

b) Scrivere il nome IUPAC e tradizionale di

H₂S solfuro di diidrogeno, acido solfidrico

KHSO₃ triossosolfato (IV) di potassio, idrogeno solfito di potassio, solfito acido di potassio Cl₂O₇ eptossido di dicloro, anidride perclorica

Esercizio 2 (9 punti)

Prevedere la geometria di $IO_2F_2^-$ (I = numero atomico 53; 5 periodo, O = numero atomico 8, F = numero atomico 9) e descrivere la formazione dei legami con la teoria del legame di valenza Geometria AX4E tetraedrica distorta, I ibrido sp³d – 4 legami sigma 1 legame pigreco

Esercizio 3 (7 punti)

Calcolare quanti atomi di ossigeno sono presenti in 69.62 grammi di anidride borica (Peso atomico boro= 10.8111 uma, Peso atomico ossigeno = 16.000 uma) $1.807 * 10^{24}$

Esercizio 4 (7 punti)

Calcolare la formula minima di un composto contenete ferro, cromo e ossigeno sapendo che dall'analisi elementare risultano le seguenti percentuali in peso per gli elementi che lo costituiscono: ferro 24.95%, cromo = 46.46%, resto ossigeno (peso atomico ferro = 55.85 uma, peso atomico cromo = 52.00 uma, peso atomico ossigeno = 16.000 uma) FeCr₂O₄

a.a 2010-2011 I provetta di chimica generale per Biotecnologie, STAN e Geologia- **Scritto F Esercizio 1** (7 punti)

a) Scrivere la formula dei seguenti composti:

Idrossido di ferro (II) Fe(OH)₂

Clorato di calcio Ca(ClO₃)₂

Cloruro di idrogeno HCl

di-diossobromato (III) di calcio Ca(BrO₂)₂

Anidride ipobromosa Br₂O

b) Scrivere il nome IUPAC e tradizionale di

H₃PO₄ acido tetraossofosforico (V), acido fosforico, acido ortofosforico

KH₂PO₄ tetraossofosfato (V) di potassio, di-idrogenofosfato di potassio

N₂O₅ pentossido di diazoto, anidride nitrica

Esercizio 2 (9 punti)

Prevedere la geometria della molecola SOF_4 (S = numero atomico 16; O = numero atomico 8, F = numero atomico 9) e descrivere la formazione dei legami con la teoria del legame di valenza Geometria AX5 bipiramide trigonale distorta, S ibrido $sp^3d - 5$ legami sigma 1 legame pigreco Esercizio 3 (7 punti)

Calcolare quanti atomi di ossigeno sono presenti in 2.200 g di biossido di carbonio (Peso atomico carbonio = 12.000 uma, Peso atomico ossigeno = 16.000 uma) $6.022 * 10^{22}$

Esercizio 4 (7 punti)

Calcolare la formula minima di un composto contenete ferro, fosforo e ossigeno sapendo che dall'analisi elementare risultano le seguenti percentuali in peso per gli elementi che lo costituiscono: ferro 37.03%, fosforo = 20.49 %, resto ossigeno (peso atomico ferro = 55.85 uma, peso atomico fosforo = 30.97 uma, peso atomico ossigeno = 16.000 uma) FePO₄